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The Fractal Nature, Graph Invariants, and Physicochemical

Properties of Normal Alkanes

D.H. Rouvray*a and R.B. Pandeyb

aDepartment of Chemistry, University of Georgia, Athens, Georgia. 30602

bDepartment of Physics and Atmospheric Sciences, Jackson State University,

Jackson, Mississippi 39217

Abstract

The variation in the physicochemical properties of linear normal alkane

molecules with the graph invariants carbon number and the Wiener index is

investigated. It is demonstrated that the variation can be interpreted in terms

of the fractal dimension of these species. A general formula expressing the

precise nature of the relationship has been derived.

Introduction

As the most extensively studied of all the homologous series, the alkanes

may now be said to be generally well understood. Extensive compilations of

data on their physicochemical properties have been amassed1 and numerous

structure-property correlations have been performed using a wide variety of U

different graph invariants.2 Such correlations tend to have only a limited range

of applicability, however, and attempts to extend the range usually lead to

* - excessively complicated expressions.3 One important reason for the difficulties Codes

encountered in modelling the alkanes in this way is that, for any given '
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physicochemical property, the increments to that property from each subsequent

addition of a methylene (CH 2) unit along the series are not constant. TheI. contributions from the methylene components become progressively smaller

as the carbon number, n, increases. 4 This type of behavior is evident from Figure
1, which shows the plot of boiling point against n for normal alkanes up to the

C40 member.

In recent years many different graph invariants have been proposed for the

characterization of chemical species. These are usually referred to in the chemical

literature as topological indices.5 ,6 Such indices reflect in different ways the

size and shape of the molecules they characterize and also provide some measure

of the degree of branching present. 7 The relationship between such indices and

the physicochemical properties of the alkanes is clearly not a linear one (note

the pronounced curvature in Fig. 1). Even if the plots are made on logarithmic

scales, some of the curvature remains, as will be apparent from Figure 2, which

shows the variation of In n with In (boiling point) for normal alkanes. To explain

this curvature we shall make use of fractal geometry and demonstrate that this

curvature arises from the fractal nature of the alkanes themselves.

The concept of the random fractal has been used to characterize any object

whose form is extremely irregular, ramified and/or fragmented at length scales

on which a self-similarity exists.8 Widespread use of -the concept has been made

in both chemistry and physics.9 12 Although the full description of a fractal

involves several different universal scaling functions and exponents, such as

the fractal dimensionality, the topological dimensionality, the order of

ramification, the connectivity, and lacunarity1 3 , we shall focus here only on

the fractal dimensionality. The fractal dimensionality is one of the most important

- scaling exponents and quantifies the manner in which the mass of an object

increases with its size.1 4 If m is the mass of the object and r its radius of gyration,
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we may write:

m a

AAwhere df is the fractal dimensionality of the object.

The Use of Graph Invariants

The carbon number, n, in an alkane molecule was first employed over 100

. :~ years ago as a means of characterizing these molecules. 15 It represents the

simplest possible graph invariant, for it may be defined as the number of vertices

in the hydrogen-suppressed graphs of alkane species.2 As such, the carbon number

may be deemed to be a topological index, though it is one which has very low

discriminating power. All isomers corresponding to a given value of n will have

the same index. Such an index is thus completely unsuitable for the

characterization of branched species. Since this index came into vogue, many

other topological indices have been developed with the specific aim of

characterizing the branching in molecular species.2 We now describe one such

index which we shall use in our investigation of the behavior of linear alkanes.

The topological index we employ was introduced by Wiener 16 and is nowadays

commonly referred to as the Wiener index. Although the index was first put

forward in 1947, its manifold applications in chemistry, physics, and several

other sciences have only recently come to the fore. Details of the index and

its applications are to be found in a review by one the present authors. 17 The

Wiener index may be defined as one half the sum of the entries in the distance

matrix, D(G), of the graph G of the molecule under consideration. Normally

- C is taken as the hydrogen-suppressed graph of the species. Thus, as will be

V N2 
_
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apparent from Figure 3, the Wiener index, W(G), for the molecule of normal

butane is 10. For normal, i.e. unbranched, alkanes, Wiener proved 1 6 the following

general, closed formula for W(G):

W(G) (. - n) (2)

We shall concern ourselves here only with normal alkane species. In Figures

4 and 5 plots of W(G) versus the boiling points of normal alkanes up to C4 0 member

are presented using respectively ordinary and logarithmic scales.

Modelling the Curvature

The pronounced curvature evident in Figures 1 and 4 is typical of plots of

most physicochemical parameters against some appropriate graph invariant used

to characterize the structure of species. An attempt to model relationships

of this general type, led Walker 18 to postulate a biparametric equation of the

following form:

P = a[W(G)] b  (3)

' . where P is some physicochemical property, and a and b are constants to be

determined for the range of values of the property P under consideration. For

limited ranges, estimates of a and b are commonly obtained from logarithmic

plots such as that shown in Figure 5. For more extended ranges, however, it

is clear that this method is not applicable, for the plots are then far from being

straight lines.

Since the first few points of the plot in Figure 5 (corresponding roughly to

Vs
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1 < n < 10) may be fitted reasonably well on one straight line, and the last few

points (corresponding to 30 < n < 40) may be fitted on another straight line, it

is of interest to inquire if the two extreme slopes have physical significance.

Let the slope of the first few points be b1 and that of the second few points

be b?. Clearly we have b1 > k2, and the range of b values lying between b1

and b will correspond to a crossover region characterized by a transition from

one power law behavior (having exponent b1 ) to another power law behavior (having

exponent b2). The Walker-type relationship in equation (3) should thus more

correctly be written as several different relationships. For the extreme cases

referred to above, the two relationships may be written in the form:

P = a M [W(G - 1 (n small) (4a)

P= .2 [W(G)]O (n large) (4b)

where al and a? are appropriate constants.

The type of behavior described by equations (4a-4b) has previously been

observed and commented upon by several authors. 19 " 21 The exponents b1 and

b7, which we shall focus on exclusively hereafter, can be interpreted in terms

of the fractal nature of normal alkane species. Detailed studies of the alkanes

near to their boiling point have led to the conclusion that the molecules behave

more or less as rigid rods when they are short 2 2 and as random chains when they

* are very long. 23 For our purpo ses it is thus reasonable to assume, as a good

first approximation, that short normal alkane molecules (1 < n < 10) are completely

stiff, whereas long normal alkane molecules (n > 35) are completely flexible.

It is, of course, well-known 2 4 that n = 35 will not be long enough to yield a

completely flexible chain; this figure was selected somewhat arbitrarily because
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of the paucity of boiling point data1 on species having n > 40. In fact, n = 30

-. lies in the crossover region between rigid rod and flexible chain type behavior. 24

Strictly speaking, therefore, precise behavior of one type or the other cannot

. be ascribed to alkanes in this region.

Alkane Fractal Dimensionalities

In our model we thus imagine short alkane molecules to exist in the form

of stiff rods, as illustrated in Figure 6. The end-to-end length, n, of such a

chain has been shown25 to be proportional to n:

! n a n. (5)

On the other hand, the flexible chain characteristic of long alkanes, which we

illustrate in Figure 7, is known24 to have an end-to-end length, En, that assumes

the following proportionality:

N a n . (6)
-.A

There is thus a clearcut change in the power law which obtains in going from

a stiff, rodlike short alkane chain to a flexible, gaussian, random-walk-like long

alkane chain.

*i From equation (1), we may therefore conclude that for small values of n,

df = 1, whereas for large values of n, df = 2. The difference in these fractal
dimensionalities reveals that we are dealing with two self-similar configurations

of the alkanes based on two different topological length scales. These are (i)

a rodlike configuration for small n which persists to some upper cutoff value

. %u .5' .,,.,,. . , ... , , . .. ..,: .,:. .'.. ..% '.... , : .'.'. . . ...... 3 ..-'' ......-.- ,.'. --- '.,,
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.c; and (ii) a flexible chainlike configuration for large n where n > nc. It is these

two different fractal dimensionalities which we use to explain the curvature

observed in the plots of physicochemical properties of the alkanes versus the

carbon number, n, or indices, such as the Wiener index, which correlate closely2 6

with n. As is evident from equation (2), the Wiener index for large n may be

expressed to a good approximation as follows:

W(G) a (n3 -n) = n3 (1 -n 2 ) - n3 . (7)

Rearrangement of the two expressions given in equations (4a-4b) to model

the variation of the physicochemical property, P, with the Wiener index, yields4

the new equations:

W(G) a P - l  (n small) (8a)

- and

W(G) a PP2 (n large). (8b)

Because the physicochemical properties of the alkanes will depend in general

- upon the configuration of the molecules and the configuration adopted will in

turn depend upon n, P can be expressed in terms of the following relationship:
'4

P , (9)

where k is an exponent which we suppose assumes the values k1 and 12 thus:

-J

Dl , . . . ,
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k 1/blW(G) a n (n small) (lOa)

W(G) a n (n large). (lOb)

If no cognizance is taken of the actual configurations adopted by the alkane

species, i.e. if no account is taken of the differing self-similarities and their

fractal dimensionalities, it is possible to derive two further relationships. Using

the value of W(G) given in equation (7), and comparing it with the exponents

in equations (lOa-l1b), we obtain the relationships:

kllbI = 3 (n small) (11a)

2b2= 3 (n large) . 11b)

To relate the results in equations (11a-lib) to the fractal dimensionality, :f,

of En, we make use at this point of an appropriately modified form of the

expression in equation (1):

.. 1/k_1

(G) (n small) (12a)

a

W(G) (n large) . (12b)

Scaling Theory Applied to the Alkanes

To interrelate the two sets of exponents {b 1, k 1} and {b2, k}, which we

have defined as being valid in the two limiting cases (i) n < nc and (ii) n > ,

use is now made of scaling arguments similar to those presented by de Gennes. 2 7

.. . . . .. . . . . . . . . . . . . . . . . . .
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The size of the molecules, characterized by fn, will clearly be different for the

two cases. Only at the point where n = nc will the two cases by precisely equal,

namely when

fn= rLn (>c) n4-nc. (13)

At this point, it then follows from equations (12a-12b). that:

.jkdf1 k2'!5df 2 (4
W(G) - = w((14)

and therefore that:

_,_ _ __b1= _--2 (15)

k5.1 qf 1 k.2 qf 2

Since from our earlier discussion we already know that dfl - 1 and df2 = 2, we

are now in a position to state our final new result as:

(16)

Experimental Test for the Derived Relationship

To test whether the new relationship derived above in equation (16) is a valid

one, determinations were made of the various slopes exhibited in the plot shown

in Figure 5. Using a least squares regression analysis, we computed the slope

of the first nine points in the Figure (corresponding to C2 through C10 alkanes),

the slope of the last nine points (corresponding to alkanes C32 through C40),

as well as the slopes of several other sets of nine points chosen from the Figure.

.3I
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The slope for the first set of nine points was found to be 0.1133 0 K, and that

for the last set equalled 0.1753°K. If each of the slopes obtained is divided by

the slope for the first set of points (0.1133°K), the ratios should converge to

the value 0.5 as n increases. A plot of these ratios against the average value

of n represented by each set of nine points chosen is presented in Figure 8.

Unfortunately, reliable boiling point data for the alkanes are not available

beyond the C40 member, and so this perforce represents an abrupt cutoff point

for our plot in Figure 8. From this plot, however, it may be seen that whereas

the ratio b 1/2 starts out from the precise value of unity, by the time the last

set of nine points is reached (corresponding to an average C3 6 ) the ratio has

fallen to the value 0.646. It seems highly likely that this fall toward the

theoretical limit of 0.5 would continue if sufficient boiling point data were

available to extend our plot beyond this artificially imposed limit.

Conclusion

A formula has been derived showing how the fractal dimensionalities, 4,

for .n characterizing normal alkane species are related to the exponents bI and

-2 in Walker-type plots of In P versus In W(G) for n small and n large. The entirely

reasonable assumption has been made that the two extreme f values are one

for short-chain normal alkanes and two for long-chain normal alkanes. We have

demonstrated that the ratios of the slopes obtained from plots in In P versus

*. In W(G) should asymptotically approach the theoretical limit value of 0.5 as n

'. becomes very large. Analysis of these plots for normal alkanes up to and including

the C40 member reveal that the ratio falls in value from unity for the C2 -C10

sets of points to 0.646 for the C3 2 -C40 set of points. It appears very likely that

the observed fall in value of the ratio would continue if data were available for

i-- .. i - -." "7: r -.. .:= . '. * .Q;... % :7 . . ., . *** * * *-.. ... J



~-11-

chains containing more than forty carbon atoms, so that the theoretical value

A of 0.5 would be more closely approached. From our results we may therefore

conclude that the Wiener topological index is able to provide valuable information

on the state of randomness of normal alkane chains at the boiling point. The

general approach we have outlined here could clearly be extended to the study

of a variety of other systems and many different physicochemical parameters.
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Captions to Figures

Figure 1. Plot of boiling point temperature against carbon number for normal

alkanes from the C 1 to the C4g member.

Figure 2. Plot of natural logarithm of boiling point temperature against natural

logarithm of the carbon number for normal alkanes from the C 1 to

the C40 member.

Figure 3. Schematic derivation of the Wiener index for the molecule of normal

butane.

r. Figure 4. Plot of the boiling point temperature against Wiener index for normal

alkanes from the C2 to the C40 member.

Figure 5. Plot of the natural logarithm of boiling point temperature against

natural logarithm of the Wiener index for normal alkane species from

the C2 to the C40 member.

Figure 6. An illustration of the end-to-end length, r n, for short, stiff, normal

-4alkane species (1 < n < 10).

. Figure 7. An illustration of the end-to-end length, En, for long, flexible, normal

alkane species (n > 35).

Figure 8. Plot of the slopes for different sets of nine points (taken from Figure

5) against the average value of n represented by each set of points.
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